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Fracture of ceramics with surface flaws 
introduced by Knoop indentation 

T. FETT 
Kernforschungszentrum Karlsruhe, Arbeitsgruppe Zuverl~ssigkeit und Schadenskunde am 
Institut for Reaktorbauelemente, West Germany 

The crack opening behaviour of surface flaws in ceramic materials, produced by Knoop 
indentation tests, was investigated. The damaged region below the indenter tip was 
replaced by a wedge. The influence of this wedge is reduced, if tensile stresses are acting 
at the damaged surface. For alumina the wedging force in moment of fracture was found 
approximately 50% of its value without additional bending. 

1. Introduction 
In the last 10 years indentation fracture mech- 
anics has been developed for ceramic materials 
[1-10].  The sizes of  surface flaws, produced by 
indentation tests, have been evaluated for a simple 
determination of Kc-values. On the other hand 
such well defined damaged surfaces are ideal 
specimens for fracture mechanical investigations. 

During the indentation of a Knoop diamond 
under load F into the surface of a ceramic material, 
a semi-elliptic crack with radius R extends (Fig. 1). 
The indented region of depth a'  and length 2b' is 
greatly damaged and plastically deformed. For com- 
putations this region shall be replaced by a semi- 
circle with an effective radius a where a' < a < b'. 

The damaged region acts as a plain wedge and 
keeps the crack open. Thus a tensile stress field 
results in the vicinity of the crack tip and may 
influence the strength behaviour. In bending tests 
the strength is found to be lower than expected 
from crack sizes and fracture toughness K e. This 
indicates, that the effect of the "wedge" will not 
vanish and the crack will not open before failure 
occurs. In practice, this effect can be avoided by 
annealing or grinding off this damaged zone. 

A detailed analysis of the opening behaviour of 
such cracks is made in this work. 

2. Crack opening behaviour of Knoop 
indentation flaws 

The theoretical considerations are based on a 
penny-shaped crack in an infinite body, which is 
opened by a circular wedge of the thickness 26(0) 
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in its centre (Fig. 2). The case of a Knoop inden- 
tation flaw is approximated by cutting the infinite 
body through the crack centre. Surface effects 
shall be neglected. In Fig. 2, the following sym- 
bols are used: R is the crack radius; r is the dis- 
tance from crack centre; a is the wedge radius; 
and 6 is the crack oPening displacement. Dimen- 
sionless radii are c = aiR and p = r/R. 

Under a condition of axial symmetry, the 
stresses a and the crack opening displacements 6 
can be calculated by Hankel-transformations and 
solving a system of integral equations. It results in 
[11, 12] 

4R f' g(x) dx 
6(p) = ~E' Jo ( x 2 - p 2 )  1:2 

(t) 
"~ p(p) pdp 

g(x)  = (x 2 _ p2)V2 

with E'  = E / ( 1 -  u 2) where v is Poisson's ratio, 
E is Young's modulus, and p(p) is the pressure 
distribution. 

2.1. Crack opening at constant wedge 
p ressu re 

2. 1. 1. General solution 
In case of  partially constant pressure distribution 

Po forO ~<p < c  

(I) P(P) = 0 f o r c < p < l  

one obtains from Equation 1 for x ~< c 

f ~: pdp gl(x)  = po (x 2-_-~)~:2 - pox  
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(2) 
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Figure 1 Generation of surface crack by a Knoop indentation test. 

and for x > c 

f] pdp (x 2 c2)ln] g;(x) = Po (x 2 _ p 2 ) u 2  - po[x--  -- 
(3) 

r 
The crack opening displacement 6p(p, c) normal- 

ized on R and Po is introduced by  

7rE r t 
6p (p, e) = 4Rpo 8 (p, e) 

Index p in 8;  means p = constant in the wedge, i.e. 
a plastically deformable wedge. From Equation 1 

one obtains 

c x d x  1 x -- (x 2 --  c2) u2 -----~2~7i dx 

1 x d x  IX 2 - -  C211/2 

6~(p, c) = (1 --  p2)U2 [1 - -  (1 - -  c~) u2] 

+ c[E(p,  c) - -  E(arc sin c, p/c)] 

f o r p  --.<c 
and 

i "  _ (X 2 _ r 
, 1 x _ _ _ = = = _  d x  

~p(p, c) = Jo 

(4) 

= (1 - - p 2 ) t n [ 1  - -  (1 - -  c2)UZl +p[E(c/p)  

- -  (1 - -  c2/p2)K(c/p) -- E(arc sinp, c/p) 

+ (1 - -  c2/p2)F(arc sin p, c/p)] 

for p > c (5) 

F(r  E(c~,k) are the incomplete elliptical 
integrals for the first and second kinds and ~ (k), 
~:(k) the related complete elliptical integrals. 

Fig. 3 is a representation of  Equations 4 and 5 
for c = 0.2. In special cases the general Equations 
4 and 5 can be replaced by elementary functions. 
The maximum value of displacement occurs at 
p = 0. From Equation 4 results 

f; ~p(O, c) = dx  + [1 --  (1 --  (c/x)2) in] dx  
0 

= 1 - - ( 1 - - c 2 ) l / 2 + c a r c c o s c  (6) 

I f  a constant pressure p acts over the whole crack 
area, i.e. r = 1, we get 

@(p, 1) = ( l - - p 2 )  u2 (7) 

2. 1.2. S t ross - in tons i t y  fac tor  
In case of  an axially symmetric stress distribution, 
the stress-intensity factor is 

Figure 2 Cross-section of a 
wedged penny-shaped crack in 
an infinite body. 
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Figure 3 Crack opening profiles 
of a different wedged penny- 
shaped crack. 

_ 2 i'R p(r)rdr 
K. (8) 

(~rR) ~ ~o ( R 2 - - ? )  1"- 

A pressure distribution 

(~ o for O<.r<~a 

p(r) = for a < r < R 

leads to 

2 a rdr 
Kp = ~pof~ (R2 r2)l/2 

2poR v2 
nu 2 {1 -- [1 -- (a/R)2] u2} (9) 

6(p) = 0 for p >  1 

This mixed boundary value problem requires the 
solution of a system of three simultaneous integral 
equations, 

2.2. 1. Approximat ion for pressure 
distribution 

A simple approximation of the given crack opening 
problem is based on the well known problem of  
elasticity, the impression of a rigid rod into the 
plain surface of an elastical material [13]. For the 
pressure distribution in the rigid wedge we assume 

p(p) ~- 
p(O)/[1 --  (p/c) 211/2 

0 

a 
= p(O)(aZ_r2)V2 fo rp~<c ;  r<.a 

for p > e ;  r > a  
(11) 

If  the pressure is concentrated in the centre of  the 
crack as a pair of  forces -+P we obtain, with 
[1 - -  (a/R)2l v2 -+ 1 - �89 2 

P 
K = .lrR.3/----- ) with P = poa2n (10) 

2.2.  Crack open ing behaviour  fo r  a rigid 
wedge 

In case of  a rigid plain wedge the problem is 
described by 

6(p) = 6(0) for O<~p<~c 

p(p) = 0 for c < p < l  
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The associated crack opening displacement defined 
by 

~'E' ! 

8~(p, c) = - -  6~(p, c) 
4np(O) c 

index r meaning rigid, is obtained from Equations 
1 and 2 

[.c in [(e + x ) / ( e -  x)] 
26;(0, e) --~ J o ~ - ~ - -  p-Y~177_ dx 

+f~ ln[(x +e)/(x-e)] 
(x 2 _ p2)1/~ 

The displacement at p = 0 is then given by 

dx 

(12) 



25;(0, c) = - In dx 
x \ c - x  I 

1 1 In ( x + C t d x  f2 + 
.~ x \ x - c ]  

= 2[L2(1) -- L2(-- 1)1 --  [ /a(c) -- L2(--c)] 

(13) 

where the Euler dilogarithm L2(x) is defined 
by [14] 

L (x) = 

The displacement, calculated from Equation 12 is 
represented in Fig. 3 for c = 0.2 and c = 0.5. 

2.2.2. Stress-intensity factor 
From Equation 8 and the approximated pressure 
distribution Equation 11 the stress-intensity factor 
Ks follows as 

2 1~ rp(r)dr 
Kr ( ~ . f o ,  (R2--r2) 1̀ 2 

2p(0)a  f :  rdr 
- r2)ln(a 2 --  r2)1;2 (lrR) in (R 2 - -  

pressure distribution 

fa rdr 
e = 2rrp(0)a o (a 2 -  r2) in  = 27rp(0)a2 

( 1 8 )  

and thus 
P 

Ks - (~R)3/2 (19) 

i.e. identical to Equation 10. 
Between the wedge forces P and the Knoop 

indentation load F(Fig .  1) a simple relationship 

P = xF/~r 3n (20) 

can be assumed, where X includes the geometry 
of  the Knoop indenter. So the well known formula 
results [ 15 -22  ] 

F 
KF = X~ /5  (21) 

The crack opening displacement at the surface 
6(p = 0) can be expressed by appropriate stress- 
intensity factors. A combination of Equations 6, 
9, 13 and 15 yields 

(14) with 

c 2 arc cos c 
c +  2 

g(c) = ] L2(1) -- L2(-- 1) --  �89 --  L~(--c)] 

�89 In [(1 + c)/(1 -- c)] 

5(0) 2 R 3/2 
K - E 7rv2ag(a/R) (22) 

for plastical wedge 

c for rigid wedge 

(23) 

with the solution [14] 

p(o)a [ R + a 
Kr (rrR), n In I'R--~__ a } 

[R~ 'n {1 + c] 
= p(O)t~} c ln ll---~c ) (15) 

In the literature on indentation tests the represen- 
tation of stress-intensity factors is given in quan- 
tities of  acting forces. In the case of  a wedge with 
constant pressure, Equation 10 results. In case of  
a rigid wedge one obtains because of  

In ~ 1 - - c ]  2 artanh c ~-- 2c (16) 

the expression 
2p(0)a 2 

Kr ~ 7rl/2R3/2 (17) 

The wedge force is obtained by integration of  the 

The functions g(e) are represented in Fig. 4. 
For numerical computations it is useful to 

employ an averaged formula 

C 2 a rc  cos  c 

g(c) ~ cq 1 - - ( 1 - - c 2 )  in 0.35 (24) 

which is also shown in Fig. 4. From Equation 21 
and Equation 22 we get 

6 (0 ) -  22. aFg(a/R) (25) 

If  the crack is not loaded by a wedge but by a 
uniform tensile stress o we find 

6(0) 2 R 1/2 2oR in 
- with K - K 7r in E 7r v2 

(26) 
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Figure 4 Representation of g(c) for a plastic 
and a rigid wedge. 

3.  K n o o p  i n d e n t a t i o n  tes t s  
In the following the case of an indentation test in 
a surface which contains residual surface stresses 
as is analysed. The size of the penny-shaped crack 
is governed by 

x F  
R3/--- i + arYR  1/2 = K e (27) 

In case of a previously annealed specimen we 
obtain, because of e r = 0, a different crack size Ro 

xFIR~/2 = K e (28) 
Introduction of 

o e = K c / Y ( R o )  1/2 (29) 

and combination of Equations 27 and 28 lead to 

(R~ + ~c ( R / R ~  = 1 

and finally to 

(Ro/R)  2 --  ( R o / R / / 2  = --  aria e (30) 

3.1. Residual wedging after indentation 
test 

If  60 is the thickness of the wedge produced during 
the indentation test and 81 is the thickness after 
removal of the indentation force, the ratio of both 
values is described by 
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81 = 86o 0<~a~<l  (31) 

where the factor c~ is assumed to be constant for a 
given fixed force F.. Between the crack opening 
displacements, caused by the wedge force F and 
residual surface stresses at, and the wedge thick- 
ness, the relation 

8o = 8(KF) + 8(Kor) (32) 

with 8(KF) from Equation 22 and ~(Kox) from 
Equation 26, must be satisfied. After removal of 
the indenter an additional stress a shall be applied 
- for instance in a bending test - so that instead 
of o r a new surface stress a a = e + a r will act. 
Since stable crack growth may occur under these 
stress conditions a different crack radius R* may 
appear. 

In analogy to Equation 32, one obtains from 
Equation 31 

8, = 8(K~) + 8(K'a) 

= a[8(Kr) + 8(Kar)] 8(K~) t> 0 (33) 

where 

K ~  = x F ' / R  .3/2 K*a = % y ( R * )  1/2 

and F '  is the residual wedge force. 
The stress-intensity factor K~,, caused by 

residual wedging, can be calculated from Equations 



22, 26 and 21 as 

tV'c / gtc ) 
C* 

g(e*) 1~,, (340 

where c* = a/R*. 
Since during indentation 

KF + Ka = Kc (35) 

is fulfilled, Equation 34a becomes 

, _ e {  R~ 3/2 
K7 - g(c*)~R*] [g(c)Kc -- (g(c) -- c)Ko~] 

C* 
g(c*) Kg* (34b) 

If we introduce the forces, F, F '  and stresses o r, %, 
it follows from Equation 34 

_ e a 

xF' g~ . )  [xFg(c) + aYRar] -- g(c*)-- YR*oa 

where Y = 2/7r 1/2. (36) 

It is evident from Equation 34, that the influ- 
ence of residual wedging will decrease with increas- 
ing tensile stresses applied (%, K'a), i.e. the wedge 
will become more and more unloaded. The con- 
dition for total unloading, when the crack surfaces 
move away the wedge is given by K~ = 0. 

The influence of residual wedging on the 
strength behaviour of Knoop damaged specimens 
can be sufficiently described by Equation 34. The 
unknown parameters e and a must be determined 
from strength tests. In these tests it will be 
attempted to verify Equation 34, i.e. to verify the 
simple assumption, that e =  constant for F =  
constant. 

4. C o m p u t a t i o n  of  bending strength 
If the Knoop indentation test is performed on a 
specimen free of stress, Equation 34 furnishes the 
results Kor = 0; R = R  o, i.e. c =Co =a/Ro. The 
residual wedging after removal of the load 
becomes 

K ;  = eKe 

A bending test will be made with this damaged 
specimen so that the surface flaw is placed in the 
tensile region. Taking into account that stable 
crack growth may occur, Equation 34 gives 

g co)[gd "= c* 
K;  = e--7-~../--~'-~l K e Ka*a (37) 

g(c *) gtc )\l~ ] 

with 
K* a = a.y(R*) xs2 

The total stress-intensity factor during the bending 
test is 

Kto t = K~ + K*a (38) 

A stable crack growth, starting from the original 
crack size Ro, will occur if Ktot decreases with 
increasing R, Le. 

aKto 4 
7-27~* < 0 Ktotln*=R 0 = Kc 
aR IR*=Ro 

The crack extends up to a critical value of R*, 
,named Re, at which spontaneous failure takes 
place. At that moment the conditions 

aKtot[ 
~R* IR*=Re > 0 (39) 

and 
KtotlR*=Ra = Kc (40) 

must be satisfied. In this case the Conditions 39, 
40 lead to an equilibrium crack size 

Re ~<Ro 

no stable crack growth can occur and the cata- 
strophical crack extension will start from the 
crack contour produced by the indentation test. 
Then the total stress-intensity factor is given by 

/(tot = eKe +Kaa[1 --co/g(co)] (41) 

Kaa = oaY(Ro)U 2 

So one obtains the bending strength with regard 
to Equation 29 

1 - - a  
o s - o c (42)  

1 --co/g(co) 

The results of computations with Equations 39, 40 
and 42 are indicated in Fig. 5; the bending strength 
o s is normalized to %. % represents the strength 
of the Knoop damaged specimen in the absence 
of wedging forces. Below the dash-dotted line the 
calculation of o B leads to critical crack sizes 
Re > R0. The strength above this line is obtained 
from Equation 42. 

This relation oB/% = f ( e ,  Co) allows to elim- 
inate one of the unknown parameters e, Co in 
Equation 34 by measurent o f a  a and %. 

4.1. Bending tests with Knoop-damaged 
specimen 

For the determination of (r e the stresses in the 
vicinity of the crack tip, caused by interaction 
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between the wedge and crack surface, must be 
annealed. Therefore, strength measurements in 
4-point-bending tests were done after annealing 
at different temperatures. First specimens of  
5 mm x 4.5 mm x 45 mm (Al203) and 3.5 mm x 
4 . 5 m m x 4 5 m m  (HPSN) were annealed for 4 h  
at 1150~ in the vacuum to remove the residual 
stresses created during fabrication of  the specimen. 
These specimens were "controlled" damaged by 
Knoop indentation tests with an indentation load 
F =  100N for A1203 and 160N for HPSN and 
than annealed at different temperature. Since 
crack healing can occur at high temperatures 
[10, 23] annealing was performed in a vacuum of  
10-Storr. After an annealing duration of  4 h  the 
temperature was reduced in steps o f  200~ and 
with 30 min thermal retardation. 

The bending strength at 0 . 5 m m m i n  -1 cross- 
head speed is shown in Fig. 6 and Fig. 7. It can 
be seen from Fig. 6 that the residual stresses in 
A1203 are removed at temperatures above 1000 ~ C. 
All tested specimens failed at the points o f  inden- 
tation. So crack-healing can be excluded. Indi- 
cations of  a crack tip blunting in addition to the 
desired stress relaxation were not found. Measure- 
ments on HPSN are shown in Fig. 7. In this 
material viscous flow near the crack tip cannot be 
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Figure 5 Bending strength o B of a Knoop 
damaged specimen, normalized to o e, as 
a function of a and c o, calculated from 
Equations 34, 38, 39, 40 and 42. 

excluded. This is suggested by the dependence o f  
fracture toughness [24] on the temperature. An 
indication is therefore the reduction of  bending 
strength scatter at 1300 and 1400~ A separ- 
ation of  both effects is certainly not easy. 

The decrease in strength at l~gh temperatures 
can be caused by a change in structure or by sub- 
critical crack growth, since crack tip stresses will 
not vanish instantly. F rom the measurements on 
A1203 one obtains 

oB/o e = 0.764 

This value is shown in Fig. 5. So the relation 
a =/'(Co) is known for this material. From the 
strength tests on HPSN it results with the assump- 
tion that all changes in strength are caused by 
annealed stresses 

oB/o e = 0.740 

5. Indentation tests on prestressed 
specimens 

In addition to the indentation tests on specimens 
free of  stress, measurements were performed on 
controlled prestressed ceramic surfaces. Com- 
pressive surface stresses can be produced in a 3- 
point-bending test [19, 25] as shown in Fig. 8. 
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The indenter produces a surface crack and because 
of 3-point-bending a compressive surface stress at 
the point of indentation. By changing the roller 
distance, different stresses can be caused with the 
same indenter load. 

The bending strength of such damaged speci- 
men (crack in tension) can be computed with 
Equations 39, 40, but instead of Equation 37 we 
have to apply Equation 34. I f  R e < R ,  R being 
taken from Equation 30, the calculation must be 
made with 

Co R0 

1 - - a  g R  
oB/oo = - -  (~ /g )1 ,2  

CoRo CoRo 
1 - - - - - -  1 - - - - - -  

g R  g R  

Figure6 Bending strength of Knoop 
damaged specimen after 4h annealing 
time at various annealing temperatures. 

x [(Ro/R) 2 -- (Ro/R) u21 (43) 

g = g(co~/g)  

The bending strengths, calculated with freely 
chosen values of  Co, are shown in Fig. 9 for A1203 
and in Fig. 10 for HPSN as a function of outer 
fibre stresses. The results of bending strength 
measurements are represented in addition, charac- 
terized by the mean values and the mean error of 
mean values. Each plotted mean value corresponds 
to 6 to 9 single tests. 

At short distances between supports, i.e. low 
compressive stresses, there are deviations from 
computed curves. Support effects are responsible 
for this remarkable behaviour, as investigated by 
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Figure 7 Bending strength of Knoop 
damaged specimen after 4 h annealing 
time at various annealing tempera- 
tures. 
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Figure 8 Three-pointq~ending arrangement for indentation 
tests on prestressed ceramic surfaces. 

Marschall and Rudnick [26] in the 3-point-bending 

test. 
In the teft part of  Fig. 11 the specimen is sup- 

ported by a single roller. At the contact line 
between the roller and specimen a compressive 
zone exists and acts with forces F/Tr parallel to the 
surface. These forces must be balanced by tensile 
forces in the remaining part of the cross-section. 
The tensile stresses are approximately 

a, = F/ bh (44) 

The compressive zone generates a supplementary 
bending moment 

= Fhl2  ( 4 5 )  

which causes a compressive stress 

M b 3F 
% = W = rthb W = bhZ]6 (46) 

in the upper surface. 
Altogether a compressive stress 

2F  
e ~ -- (47) 

~rbh 

results on the upper surface. With F = 300N, 
b = 4.5 mm, h = 3.5 mm one obtains 

cr ~ -- 12Nmm -2 (48) 

In case of a greater roller distance, this effect 
vanishes from the range of indentation. The 
strength values, measured at shorter roller dis- 
tances, have to be corrected according to Equation 
48. 

0 
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Figure 9 Bending strength of Knoop 
damaged specimen (A1203). Knoop 
indentation tests were carried out 
with a prestressed specimen. 
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From a comparison between measured and 
calculated curves follows 

co(A1203) "" 0.39 

co(HPSN) ~ 0.48 

From the bending strength without prestress, 
reported in Section 4. I, we get 

1.5 

~(A1203) = 0.383 

a(HPSN) = 0.466 

Except for the support effects, the theoretical 
curve is in good agreement with the measurement. 

By application o f  these parameters we obtain 
the results given in Table I 
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Figure 11 Influence of support effects on the Knoop indentation test. 
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T A B L E  I 

AI203 I-I~N 

KFo/Ke = a 0.383 (0.466) 
KFc/Kc 0.119 (0.075) 
KFc/KFo 0.31 (0.16) 
Re/Ro 1.38 (1.64) 
F~/Fd 0.51 (0.336) 

where KFo = K~(R* = Ro) = residual K-value after 
unloading, and KFe = K~(R* = Re) = residual K- 
value at failure in the bending test. This shows dis- 
tinctly that residual wedging decreases with increas- 
ing tensile stress in the bending strength test. The 
data for HPSN are associated with a great uncer- 
tainty, since the change in strength after annealing 
was only interpreted as stress removal. 

These results are in contrast to conclusions of 
Marshall et al. [27] obtained from tests with soda- 
lime glass. From measurements of the mirror/flaw 
size ratio it was concluded that the residual wedge 
forces in glass do not relax due to applied tension. 

6. Summary 
1. The crack opening behaviour of surface 

flaws, produced by Knoop indentation tests, has 
been analysed, replacing the damaged region below 
the indenter tip by a wedge. Computations were 
performed for a plastically deformable and for a 
rigid wedge. 

2. The residual wedging forces after removal of 
the Knoop indenter were calculated under the 
assumption, that the remaining wedge thickness is 
reduced by a constant factor. So the influence of 
wedging on bending strength could be analysed. 

3. Necessary parameters could be determined 
by measurements of bending strength of Knoop 
damaged specimens before and after annealing and 
by indentation tests in controlled prestressed sur- 
faces. 

4. It was found, that the wedging forces were 
reduced to 40% after removal of indenter. In the 
following bending tests an additional reduction of 
about 50% was stated. This relaxation is caused by 
external stresses and the increase of crack size by 
stable crack growth. 
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